Appendix 1. Some timbers used by Kings
Fourth Generation Woodworking Co.

By kind permission of Kings Fourth Generation Woodworking Co., Broadway, P.O. Box 194,
Carterton, New Zealand, telephone +64-6-379 8812, fax +64-6-379 8919, email
timbertops@generation-4.co.nz, web www.generation-4.co.nz/timber.htm/
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Enquiries
" Generation IV Competition

Home Page

Kahikatea

NZ Red Beech *

Rimu Recycled

New Zealand Native Timbers

NZ Plantation Timbers

Imported Timbers

Click on the samples to see a larger view and/or further details

“These images are true representatives of each species. Grains and colours
can vary considerably.”

New Zealand Native Timbers

Matai NZ Heart Kauri NZ Kauri Pale
Rewarewa Rimu Heart Rimu Pale

Southland Beech * Totara

* The only sustainably grown New Zealand native species
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Black Totara

NZ Plantation Timbers

Lawson Cypress Macrocarpa NZ Blackwood
NZ Saligna Radiata Pine Silver Wattle
Imported Timbers
African Wenge African Bubinga African Padauk African Anegre
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Aust Blackwood Aust Jarrah Aust Silky Oak

Burmese Teak Euro Beech Fiji Kauri Fiji Salu Salu
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Appendix 2. IUFRO Breeding theory and
progeny testing: Eucalyptus and Acacia
breeding programs in some Asian countries

Chris Harwood, Ensis, Private Bag 12, Hobart 7001, Australia.

Downloaded from http://iufro.uncronopio.org/node/6

At the IUFRO Conference “Eucalyptus in a Changing World” in Aveiro, Portugal, in October
2004, | was struck by a remark made in one of the sessions to the effect that little work on
eucalypt breeding seems to be going on in Asian countries. While some of the work is under-
reported in the international literature, many Asian countries in fact have well-advanced
programs of domestication and genetic improvement for eucalypt species and other tree
genera of Australian origin.

Australian tree genera are very prominent in tropical and subtropical plantation forestry (Evans
and Turnbull 2004). In addition to their use in formal plantations, eucalypts and other
Australian species are planted widely in rows or as individual trees on farms, around
homesteads, and along canals and roadsides throughout much of the warmer regions of the
world. Plantations of Acacia species of Australian origin are estimated to occupy about 2 M
hectares, and continue to expand rapidly (Midgley and Turnbull 2003). Planting of Australian
species as exotics began in the late 18th century, and has continued at an accelerating rate,
despite some controversies over issues such as weediness, water use, social impacts and
land ownership.

Commencing in the 1960s, with the support of FAO and IUFRO, international species and
provenance trials based largely on seed collections made by CSIRO’s Australian Tree Seed
centre were established in many countries. The most productive species and provenances of
Eucalyptus and Acacia, and other Australian genera prominent in tropical plantation forestry
such as Casuarina, Grevillea and Melaleuca were identified. Important new plantation species
such as A. crassicarpa were “discovered” and domesticated in this process. Over the past
twenty years, A. crassicarpa has gone from a virtually unknown tree in the wilds of north
Queensland and New Guinea to a major commercial plantation species for pulp and paper in
Southeast Asia (Midgley and Turnbull 2003). China, Indonesia, Thailand and Vietnam all now
have well-established progeny testing programs and seed orchards for this species.

Inbreeding and negative selection, often from a sub-optimal initial introduction, have caused
severe genetic deterioration in many unmanaged land races of key Australian tree species,
with resulting declines in the productivity of plantations based on informally collected seed
(Harwood et al. 2004). Over the 1980s and 1990s, strong efforts were made to establish in-
country mass-production of genetically improved planting stock based on superior
provenances of key species, through seed orchards and clonal programs. Government
research agencies and some private companies in many Asian countries now have well-
established breeding populations based on appropriate provenances of their key species, and
seed orchards and clonal programs delivering large quantities of improved planting stock,
resulting in substantial gains in plantation productivity. A recent meeting in Bangkok, Thailand,
sponsored by the Australian Centre for International Agricultural Research (ACIAR) and
attended by lead scientists from national agencies charged with forest genetic research,
documented the domestication status of Australian species in Asian countries. This
information is summarised in Table 1 below.

Eucalyptus and Acacia breeding programs in some Asian countries.

It can be seen that countries such as China, India, Indonesia, Thailand and Vietnam are well-
advanced in overall domestication of Australian species. Forest plantation companies have
now established sophisticated tree improvement programs to support large scale industrial
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plantings - Acacia mangium, A. crassicarpa and E. pellita in Indonesia and the programs to
develop hybrid eucalypt clones in China are good examples. Genetically improved planting
stock (relative to the best wild introductions) comprises a rapidly growing percentage of new
plantations. In southern India, for example, seedling seed orchards established in the mid
1990s (Varghese et al. 2000) already provide about 20 kg of improved E. camaldulensis and
E. tereticornis seed per year, sufficient to establish more than 2,000 ha of plantations. The
breeding populations of these species established in southern India have also yielded a new
series of highly productive clones for clonal forestry, and form a genetic base for hybrid
breeding. Growth of the orchard seed in genetic gain trials is superior to that of local
commercial seed sources (Mohan Varghese, pers. comm. 2004).

Table 1. Status of tree domestication programs in Asian countries
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In China, which now has over 1.5 M hectares of eucalypt plantations, new plantings are
delivering yields of around 20 m3 ha-1 year-1, almost three times that achieved with
previously-used species and silviculture (Van Bueren 2004). The development of high-yielding
trees has been at least partly responsible for the rapid expansion in planting area, and it was
concluded that the eucalypt research and development supported by ACIAR and implemented
by Chinese research institutes in partnership with Australian forest research agencies has
almost certainly made a considerable contribution to improving the living standards of rural
people in southern China. In Vietnam, the establishment of over 130,000 hectares of highly
productive clonal plantations of the acacia hybrid A. mangium x auriculiformis is an
outstanding achievement, considering that research on tropical acacias commenced in that
country only in the late 1980s (Le Dinh Kha 2001; van Bueren 2005, in press).

References

Evans, J. and Turnbull, J.W. (2004). Plantation Forestry in the Tropics. The role,
silviculture and use of planted forests for industrial, social, environmental and
agroforestry purposes. Oxford University Press.

74



Harwood, C., Ha Huy Thinh, Tran Ho Quang, Butcher P.A. and Williams E.R. (2004).
The effect of inbreeding on the early growth of A. mangiumin Vietnam. Silvae
Genetica 53:65-69.

Le Dinh Kha (2001). Studies on the use of natural hybrids between Acacia mangium
and Acacia auriculiformis in Vietnam. Agricultural Publishing House, Hanoi.

Midgley, S.J. and Turnbull, J.W. (2003). Domestication and use of Australian acacias:
case studies of five important species. Australian Systematic Botany 16: 89-
102.

Smith, S.E.; Read, D.J. 2008. Mycorrhizal Symbiosis (Edit 3). Academic Press,
Oxford.

Van Bueren, M. (2004). Eucalypt Tree Improvement in China. Impact Assessment
Series Report No. 30. Australian Centre for International Agricultural
Research, Canberra.

Van Bueren, M. (2005). Acacia hybrids in Vietham. Impact Assessment of ACIAR-
funded project FST/1986/030. Australian Centre for International Agricultural
Research, Canberra (in press).

Varghese, M; Nicodemus, A; Nagarajan, B; Sasidharan, K.R; Siddappa; Bennet,
S.S.R. and Subramanian, K. (2000). Seedling Seed Orchards for Breeding
Tropical Trees. Institute of Forest Genetics and Tree Breeding, Coimbatore,
India.

75



Appendix 3. Lists of arbuscular mycorrhizal
plants suitable for windbreaks around
truffieres and unsuitable ectomycorrhizal
plants.

There are several web sites that have lists of the types of mycorrhizas that are formed by
various species of plants. Some good ones are:

www.ffp.csiro.au/research/mycorrhiza/ozplants.html#define

www.horticulturalalliance.com/Plant _Species and Type of Mycorrhizae.asp

www.mycorrhiza.org/EXPERTflat.PDF

www.nifg.org.uk/ecto.htm#Which%20trees

www.tandjenterprises.com/BioVam Plant List.htm

Table 1 is a short list of a few plants that form arbuscular mycorrhizas (AM or VAM) that can
be grown near to a truffiere. Incidentally with the exception of native beeches, manuka and
kanaka almost all New Zealand natives form AM mycorrhizas. Table 2 is a list of some of the
trees that form ectomycorrhizas. These harbour fungi that can compete with truffle fungi.
Truffiéres should not be planted close to these and these trees should not be included in living
windbreaks adjacent to a truffiere. Compilation © Truffles & Mushrooms Consulting Ltd, 2006.

Table 1. Some arbuscular mycorrhizal plant species

Common name

Botanical name

Plant family

Akeake Dodonaea viscosa Sapindaceae,
Akiraho Olearia paniculata Asteraceae
Almond Prunus dulcis Rosaceae
Apple Malus Rosaceae
Apricot Prunus armeniaca Rosaceae
Angelica tree Aralia Araliaceae
Ash Fraxinus Oleaceae
Avocado Persea americana Lauraceae
Bamboo Bambusa Pooideae
Banana Musa Musaceae
Barberry Berberis Berberidaceae
Bayberry Myrica Myricaceae
Black locust Robinia Fabaceae
Blackberry Rubus eubatus Rosaceae

Box elder Acer negundo Aceraceae
Broadleaf Griselinia Griseliniaceae
Boxwood Buxus Buxaceae
Buckeye Aesculus Hippocastanaceae
Burning bush Euonymus Celastraceae

Cacao

Theobroma cacao

Sterculiaceae

Camellia Camellia Theaceae
Catalpa Catalpa Bignoniaceae
Cherry Prunus avium Rosaceae
Chinaberry Melia azedarach Meliaceae
Coral tree Erythrina indica Fabaceae
Crabapple Malus Rosaceae
Cryptomeria Cryptomeria japonica Taxodiaceae
Cucumber tree Magnolia acuminata Magnoliaceae
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Dogwood

Fig

Flax, New Zealand
Fuschia

Gingko

Gorse

Grapes
Hackberry
Hibiscus

Holly

Horse chestnut
Juniper

Kamahi
Karamu

Kauri

Korokia

Kowhai
Lacebark
Lawson cypress
Lemonwood
Leyland cypress
Macrocarpa
Magnolia
Mahoe

Maples
Marbleleaf
Mulberry

Olive

Palms

Papaya
Paulownia
Peach

Pear
Persimmon
Plum

Podocarp
Pohutukawa
Privet

Rain tree

Rata

Redwood, coastal
Redwood, giant
Ribbonwood
Rowan
Sycamore
Tree-of-heaven
Tulip tree
Viburnum

Yew

Cornus

Ficus carica

Phormium tenax
Fuchsia

Ginkgo biloba

Ulex europaeus

Vitis

Celtis

Hibiscus rosa-sinensis
llex

Aesculus

Juniperus

Weinmannia racemosa
Coprosma robusta
Agathis

Corokia buddleoides
Sophora spp.

Hoheria populnea
Chamaecyparis lawsoniana
Pittosporum

X Cupressocyparis leylandif
Cupressus macrocarnpa
Magnolia

Melicytus ramiflorus
Acer

Carpodetus serratus
Morus

Olea europaea

Cycad

Carica papaya
Paulownia

Prunus persica

Pyrus communis
Diospyros

Prunus

Podocarpus
Metrosideros excelsior
Ligustrum

Koelreuteria elegans
Metrosideros

Sequoia sempervirens
Sequoiadendron giganteum
Plagianthus betulinus
Sorbus

Acer

Alianthus altissima
Liriodendron

Viburnum

Taxus spp

Cornaceae
Moraceae
Agavaceae
Onagraceae
Ginkgoaceae
Fabaceae
Vitaceae
Ulmaceae
Malvaceae
Aquifoliaceae
Hippocastanaceae
Cupressaceae
Cunoniaceae
Rubiaceae
Araucariaceae
Cornaceae
Papilionaceae
Malvaceae
Cupressaceae
Pittosporaceae
Cupressaceae
Cupressaceae
Magnoliaceae
Violaceae
Aceraceae
Carpodetaceae
Moraceae
Oleaceae
Cycadaceae
Cariceae
Paulowniaceae
Rosaceae
Rosaceae
Ebenaceae
Rosaceae
Podocarpaceae
Myrtaceae
Oleaceae
Sapindaceae
Myrtaceae
Taxodiaceae
Taxodiaceae
Malvaceae
Rosaceae
Aceraceae
Simaroubaceae
Magnoliaceae
Caprifoliaceae
Taxaceae
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Table 2. Some ectomycorrhizal plants (* may also form arbuscular mycorrhizas).

Common hame Botanical name Plant family
Alder Alnus Betulaceae
Strawberry tree Arbutus Ericaceae
Aspen Populus * Salicaceae
Beech Fagus Fagaceae
Birch Betula Betulaceae
Cedars Cedrus Pinaceae
Chestnut Castanea Fagaceae
Cherry, bird Prunus padus Rosaceae
Cherry, dwarf Prunus cerasus Rosaceae
Cherry, wild Prunus avium Rosaceae
Douglas fir Pseudotsuga menziesii Pinaceae
Eucalyptus Eucalyptus * Myrtaceae

Fir Abies Pinaceae
Hawthorn Crataegus Rosaceae
Hazels Corylus Betulaceae
Hemlocks Tsuga Pinaceae
Hickory Carya Juglandaceae
Hornbeam Carpinus Betulaceae
Ironwood Casuarina Casuarinaceae
Kanuka Kunzea ericoides * Myrtaceae
Larch Larix Pinaceae
Lime Tilia Tiliaceae
Manuka Leptospermum scoparium * Myrtaceae
Oak Quercus Fagaceae
Pine Pinus Pinaceae
Poplar Populus * Salicaceae
Redbud Cercis canadensis Fagaceae
Rock rose Helianthemum Cistaceae
She-oak Casuarina * Casuarinaceae
Spruce Picea Pinaceae
Walnut Juglans Juglandaceae
White leaved rock rose Cistus Cistaceae
Wild service tree Sorbus torminalis Rosaceae
Wild pear Pyrus pyraster Rosaceae
Willows Salix * Salicaceae
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Appendix 4 Gilmore’s 1958 paper on
Douglas fir

Gilmore, JJW. 1958. Chlorosis of Douglas-fir. New Zealand journal of forestry 7: 94-106.

The  full article can be  downloaded free of charge from:
http://www.nzjf.org/free_issues/NZJFO7 5 1958/35E128E8-C36C-4432-8296-
4E60B097564A.pdf

CHLOROSIS OF DOUGLAS FIR
J. W. GILMOUR*

Summary

Chlorosis followed by stagnation of up to 80% of the newly
established Douglas fir at Akatore, Berwick, and Herbert State Forests
is described. Field investigations indicated that this condition was
caused by the poor develobpment of a particular type of mycorrhiza
in the heavy clay soils occurring in these forests and in Milton
nursery. Only stands established with Milton raised seedlings have been
severely affected. Interim results from planting trials showed that
Tapanui seedlings and Milton seedlings treated with duff in the field,
were far superior to untreated Milton seedlings in transplantability and
survival. Lack of mycorrhizal development in Milton nursery appeared
to be due to the absence of proper inoculation, certain unfavourable
nursery practices and possibly periodic anaerobic soil conditions.

INTRODUCTION

The development of a chlorotic moribund conditionn in young
Douglas fir (Pseudotsuga taxifolia (Poiret) Britton) has been alarm-
ingly evident in the establishment of a number of plantations in the

~ South Island of New Zealand.

In 1939, at Golden Downs State Forest, early chlorosis was reported
by Forest Ranger R. E. L.awrence. He believed that this condition
was caused by the absence of all the appropriate mycorrhizal fungi
in certain nurseries, He also saw similar symptoms in newly established
Douglas fir grown at Ashley State Forest in 1940. Here it was supposed
to have been corrected by the addition of duff collected from under
established stands of Douglas fir at Hanmer. Unfortunately his ideas
and observations were not adequately recorded or investigated at
the time.

In 1954 a similar chlorotic condition of Douglas fir was reported
from Berwick, Herbert and Akatore State Forests, near Dunedin

in the South Island.

All areas of this species established since 1949 in these forests,
using seedlings raised in Milton nursery, showed many sickly yellow,
stagnating trees scattered at random among apparently healthy fast
growing trees. The purpose of this paper is to describe this early
chlorotic moribund condition of Douglas fir in newly established
areas, to discuss its probable cause and remedy, and to present
interim results of two field trials.

* Forest Mycologist, Forest Research Institute, Rotorua.
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Appendix 5. A review of older papers on
growth responses to arbuscular mycorrhizal
Inocula

Reprint of: Hall, I.R. 1988. Potential for exploiting vesicular arbuscular mycorrhizas in
agriculture. /. Biotechnology in Agriculture, Ed A. Mizrahi, Advances in Biotechnological
Processes 9: ARL, New York, 141-174. See, in particular pages 142 and 152 of the reprint for
typical examples of growth responses to inoculation by arbuscular mycorrhizal fungi.

Biotechnology in Agriculture, pages 141-174
© 1988 Alan R. Liss, Inc.

Potential for Exploiting Vesicular-Arbuscular
Mycorrhizas in Agriculture

L.R. Hall

Invermay Agricultural Centre, Ministry of Agriculture and Fisheries, Private Bag,
Mosgiel, New Zealand
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Vesicular-arbuscular mycorrhizas (VAM) can improve plant growth by
stimulating the uptake of nutrients, especially phosphorus (Fig. 1) [43,
97,168], suppressing the detrimental effects of root pathogens [18,35,36,78]
(Table I) and possibly by having beneficial effects on plant hydration (see
Table XV:ii for references). However, the beneficial effects isolates and
species of VAM fungi have on plant growth can vary [4,5,6,50,58,61,
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Fig. 1. Effect of a mixed inoculum of Glomus fasciculatum and Gigaspora margarita on
Grasslands Huia white clover (Trifolium repens L.) growth in a phosphorus-deficient steamed
soil in a greenhouse pot experiment. [J, uninoculated; M, inoculated [from 86].

62,74,118,125,131,133,163,166,185,203,223]. This plus the demonstration
that some soils contain few or no VAM fungi, or are populated by VAM
fungi less effective than those which can be introduced (Table II; see sections
I and II.A for references) has attracted the attention of applied research
workers. This paper reviews this applied research and discusses the possi-
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TABLE 1. Effect of a Mixed VAM Inoculum, Meloidogyne hapla Chitwood and
Applied Phosphate on Shoot Dry Weight of Wairau Alfalfa (Medicago sativa L.) and
Number of Nematodes Per Gram of Root [From 78—VAM and Nematodes Added at
Transplanting]

Inoculum Added phosphorus (kg P/ha)
VAM Nematodes 0 8 30 120

Shoot dry weight
(g—square-root transformed)
— - 4.24 4.69 9.27 13.71

+ - 10.95 10.77 12.77 17.44
- + 3.16 3.46 5.83 11.49
+ + 11.31 9.70 13.82 16.73
LSD (5%) 1.08
Nematodes/g fresh weight
of root (square-root transformed)
— + 44 .72 37.42 46.90 44.72
+ + 14.14 14.14 28,28 2449

LSD (5%) <9.14

TABLE II. Effect of Two VAM Inocula on Soybean [Glycine max (L.) Merrill cv.
Tainon 4] Seed Yield (g/pot) Grown for 84 Days in Four Lowland Subtropical Soils in
the Greenhouse [From 230: Experiment 1]

Soil
Inoculum Taichung Pingtung Changhua Tainan
Glomus fragile 4.7 8.9 6.5 4.9
G. fasciculatum 4.2 10. 0 6.9 53
None 3.9 7.5 4.8 3.7
LSD (5%) 0.8

bilities and practicalities of exploiting VAM symbiosis in agriculture. It
has therefore been written more from an agriculturalist’s point of view than
a mycologist’s, and readers who would prefer a different emphasis are
referred to Harley and Smith [97], papers in the book edited by Powell and
Bagyaraj [184], and papers by Mosse [157] and Smith and Gianinazzi-
Pearson [211].*

*This chapter was prepared before the 7th North American Conference on Mycorrhizas. There
are a number of papers presented in the Proceedings which are relevant to this review.
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I. POT EXPERIMENTS

Pot experiments in sterilized soil have proved valuable by providing much
useful information, for example, on the role VAM play in the mineral
nutrition (Fig. 1) [8,43] and carbon economy [98,220] of plants, and by
demonstrating apparent differences in the effectiveness of VAM fungi (Table
II; see above for references). Partial or complete soil sterilization, however,
can change its nutrient status and structure [116,142,160,195], as well as
removing some or all of the microbiota [30,160], while VAM fungi appear
to be adapted to such specific soil conditions. The results of experiments in
sterilized soils which purport to show that a soil’s indigenous VAM fungi
differed in effectiveness from others with which it was compared [e.g.,
175,180] are therefore questionable because the indigenous fungi may no
longer be well adapted to the changed soil conditions. The same criticisms do
not apply to similar greenhouse pot experiments which used unsterile soils
containing their normal complement of VAM fungi [2,38,91,135,156,
176,230]. However, these experiments too are open to question. For
example, Young and co-workers’ [230] (Table II) data could be interpreted
as showing that both Glomus fragile (Berk. & Broome) Trappe & Gerd. and
G. fasciculatum (Thaxter sensu Gerd.) Gerd. & Trappe were superior VAM
fungi to the indigenous ones in the four soils. It is conceivable, however, that
the inoculum potential of the four soils may have been naturally low or
depressed by prolonged storage (see section II.A.1). This could have resulted
in the delayed onset and benefits of infection in the controls, which could
have been particularly marked in relatively short-term experiments.

Another limitation of pot experiments is that greenhouse environments
usually differ from those in the field. For example, water is not usually
allowed to become limiting in greenhouse studies [cf. 32], but tolerance to
drought may be the most important factor to which a VAM fungus may have
to be adapted [3]. Plants raised in containers in the greenhouse and then
placed in or on the soil surface in the field offer some compromise, but where
the effects of VAM in agriculture are under study there is no substitution for
field experiments conducted using standard agricultural practices and with
soil and climatic conditions, etc., as close as possible to those to which a
crop/pasture is normally exposed.

II. FIELD EXPERIMENTS

Despite all the work that has been done on VAM over the past two decades
regrettably only a limited amount has been directly aimed at exploiting the
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symbiosis in agriculture and relatively few researchers have attempted field
experiments. There are a number of reasons for this omission:

® There are only a limited number of establishments where VAM research is
being conducted which have the facilities and expertise for conducting
field experiments.

® Ph.D. and M.Sc. supervisors are unwilling to let their students conduct
risky field investigations and have therefore steered them towards green-
house and laboratory work.

® Many institutions involved in VAM research would find the cost of
extensive field experiments prohibitive. For example, I estimate that the
current cost of my own series of field experiments and preliminary
experiments [89,90] would be in excess of $200,000.

® Much VAM research is conducted simply to further our scientific
understanding of the symbiosis, and commercial values have little
relevance.

A. Field-Sown Crops and Pastures

In some pot and field experiments dealing with normally field-sown crop
and pasture species, a comparison of the effectiveness of indigenous and
introduced VAM fungi was made by transplanting from the glasshouse to the
field uninoculated seedlings (controls) or seedlings inoculated with an
“‘elite’” strain of a VAM fungus and then comparing subsequent plant growth
[17,101,105,113,115,123,124,197]. Such experiments have two inherent
errors:

1. Plants inoculated before transplanting would benefit from mycorrhizas
for the period from inoculation to transplanting, while the uninoculated
controls would not. For example, in Khan’s [123,124] experiments this time
advantage was from 18% to 20% of the total experimental period and in
Islam and colleagues’ [112] from 20% to 43%. At transplanting this
advantage may not have been apparent, but by the end of the experiment it
would have at least contributed to significant differences in treatments.

2. Work by Hall [83] suggests that as uninoculated seedlings get older
they respond to VAM infection more slowly, and hence the controls would
have been further disadvantaged.

In other experiments using pre-inoculated transplant techniques these
criticisms were overcome by inoculating the controls with a culture of the
indigenous fungi from the soil into which the seedlings were later to be
transplanted [e.g., 176,178,179]. However, even in these experiments
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TABLE III. Effect on Plant Height (Square-Root Transformed) of Inoculating
Pelletted Field Grown Lotus pedunculatus Cav. cv. Grasslands Maku With Glomus
Sfasciculatum [From 88]

Applied P (kg/ha)

Inoculum 10 50

Non-VAM-infested pellet 2.28 2.81

VAM:-infested pellet 2.95 3.52
LSD (5%) 0.34

competition among the indigenous VAM fungi, the soil flora and fauna, and
the inoculant fungus develops only after transplanting. All the phases of
growth and competition that an inoculant VAM fungus might otherwise have
encountered from the initiation of hyphal growth from a resting propagule,
growth through the soil to a root, and the formation of pre-infecting
structures followed by infection are bypassed [3]. Also, transplanting
infected seedlings to inoculate field-sown crops and pastures with VAM
fungi is not a practical technique (see section IV), and consequently the
results of experiments which employed these techniques for normally
field-sown crops and pastures must be interpreted with some caution.

Two field techniques which have been used to investigate the effects of
VAM on the growth of crops in the field are comparing the growth of plants
in unfumigated soil with that in fumigated soil [171,222,229], and removing
the indigenous fungi with soil fumigation followed by re-inoculation of half
of the plots [33,34,115,117,192,201]. However, in the former the beneficial
(removal of pathogens and release of nutrients) and detrimental (e.g.,
bromine residues) effects of fumigation can be confounded, with the loss of
the potential benefits of VAM fungi [also see 229]. In addition, neither type
of experiment can determine whether inoculant fungi were any more
effective than the indigenous ones under normal soil conditions. To study this
it is necessary to conduct field experiments in which normal agronomic
practices have been followed and, preferably, inocula applied using tech-
niques which could be adapted to agriculture.

1. Soils with low VAM inoculum potentials. Subsoils, eroded soils,
fumigated soils, and mine spoils can contain low VAM fungal populations
[10,71,82,93,116,153,189,191,225]. It also seems likely that those VAM
fungi which are present in these soils would have been derived from
miscellaneous accidental natural introductions and therefore may not be
those best suited to the conditions. The beneficial effects of VAM inocula on
plant growth demonstrated in Hall’s {89] (Table III) experiment on an eroded
soil, Haas and co-workers’ [82] on a methyl bromide fumigated soil,
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TABLE 1V. Effect of Glomus macrocarpum and Fertilizer Phosphorus on Yield and
VAM Infection of Potato (Selanum tuberosum L.) Growing in the Field in a Fallowed
Soil [From 28]

Triple superphosphate  Tuber yield VAM infection

application (kg/ha) (t/ha) in July (%)
Inoculated with G. macrocarpum 0 8.07 24.3
481 9.62 2.6
Not inoculated 0 6.72 4.6
481 10.37 1.6
<1.54 <19.7
LSD (5%)

TABLE V. Effect of VAM Inocula on Mean Shoot Dry Weights (g'm Row; Log,
Transformed) of Lucerne cv. European, Onion (Allium cepa L. cv. Ailsa Craig) and
Barley (Hordeum vulgare L. cv. Ark Royal) Grown in Unsterile Field Soil [From 167]

Crop
Inoculum Lucerne Onion Barley
Glomus mosseae + other VAM fungi 0.858 -0.139 2.178
Glomus c. caledonium 2.145 0.972 2.213
None 0.031 —1.663 1.665
LSD (5%) 0.748

Swaminathan and Verma’s [216] on Phagu reclaimed terrace soil, and
Hashim-Chulan [99] and Lambert and Cole’s [138] on mine spoils were
therefore not unexpected. In Hall’s [88] experiment the soil was also very
deficient in phosphorus and had a very high phosphorus sorbing capacity; and
the host plant, Lotus pedunculatus Cav. cv. Grasslands Maku, was one
known to be reliant on the formation of VAM for vigorous growth in
phosphorus-deficient soils [93,181]. Similarly, the experiments of Haas et al.
[82] on Capsicum (bell pepper) were conducted in a very high phosphorus
sorbing soil which had been fumigated to control pepper collapse disease and
therefore contained a low VAM fungal density.

The fallowed soil used by Black and Tinker [28] in their study on potatoes
was also clearly deficient in VAM fungi, as evidenced by the low infection
levels in the uninoculated plots (Table IV). This accounted for the observed
responses to inoculation in the absence of applied phosphorus. Similarly in
Owusu-Bennoah and Mosse’s [167] experiment (Table V), even though by
the end of the experiment infection levels were high in the uninoculated
controls, the responses to inoculation were surprisingly large, suggesting that
the previously fallowed soil either was deficient in VAM fungi or was
populated by relatively ineffective species. Also, the response to inoculation
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TABLE V1. Effect of Glomus fasciculatum Inoculum on Soybean (cv. Hardee) Growing
in a Fallowed Soil [From 19]

45 days
after inoculation

Grain VAM

Shoot yield/  Shoot N Shoot P Nodule VAM  spores/
dry wt/ 1.2m* content content dry wt/ infection  50ml

Inocula plant(g) plot(g) (mg) (mg) plant(g) level(%) soil
Rhizobium alone 2.83 85.0 93.4 11.3 0.24 65 226
Rhizobium +

G.fasciculatum 4.65 100.7 198.1 26.6 0.41 82 274
LSD(5%) <1.82 >15.73 <1047 <1538 <0.17 na <48

na =not analyzed

TABLE VII. Response of Field Grown Subterranean Clover (Trifolium subterraneum
L. cv. Seaton Park) to Inoculation With Glomus fasciculatum [From 9—Site 2,
Harvest 1]

Individual plant weight Total infection
Inoculum (g) (%)
None 0.24 10
G.fasciculatum 0.42 42
LSD(5%) <0.08 <10

(Table VI) produced in soybean [19] and in barley [179] in fallowed soils
could have been due to a low VAM fungal density.

2. Pastures. The primary aim in the experiments of Abbott et al. [9] was
not to determine if growth could be stimulated by introducing more effective
strains of VAM fungi but to investigate the possibility of establishing
inoculant fungi in soils which were already well populated by indigenous
VAM fungi. Two inoculant fungi, Glomus fasciculatum and G. monosporum
Gerd. & Trappe, were compared at four experimental sites chosen on the
basis of the infectivity of their indigenous VAM fungi. The soils ranged from
severely phosphorus deficient to well fertilized and not responsive to
phosphorus. The G. monosporum inoculum failed, but G. fascicularum did
establish and raise infection levels at two sites. At the less fertile of these two
sites this increase in infection level was accompanied by a transitory growth
response at early harvests (Table VII).

Other experiments conducted by Azcon-Aguilar and Barea [16], Hall
[90], Hayman [102,103], Newbould and Rangeley [162], and Rangeley et al.
[188] were designed specifically to determine if pasture growth could be
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TABLE VIII. Effect of VAM Inoculation on the Yield of Grasslands Huia White
Clover (kg Dry Matter/ha) in an Acidic Brown Earth [From 188]

Applied P(kg/ha)
Inoculum 0 40
None 1,070 841
Glomus etunicatum 598 1,930
LSD (5%) 572

TABLE IX. Effect of VAM Inocula on Pasture Dry Matter Yields (t/ha) on a Soil
With 15 pg Olsen Available P/ml Meaned Over Four Levels of Applied P [From 90:
Experiment 3]

Year 1
Inoculum Harvest 1 Harvest 2+3 Year 2 Year 3
Glomus mosseae 0.80 1.12 6.32 6.15
Glomus macrocarpum 0.91 1.16 6.08 6.01
Glomus tenue + 0.93 1.14 5.78 5.92
G. pallidum
None 0.92 1.02 5.56 5.59
5% LSD 0.10 0.07 0.35 0.40

stimulated by inoculant VAM fungi. The soils on which their experiments
were conducted ranged from very infertile hill country soils to high-fertility
alluvial flats. In some of the experiments, rate of applied phosphorus was a
treatment factor and some were carried on for more than 1 yr. The most
widely used inoculant fungus was Glomus mosseae (Nicol. & Gerd.) Gerd.
& Trappe, but a number of others were also employed. Proportionately the
largest responses to inoculation were detected in the less fertile soils (Tables
VIII, IX). For example, in Rangeley and co-workers’ [188] (Table VIII)
experiment on an acidic brown earth in Roxburghshire, United Kingdom,
clover yields were doubled (ca. 1,000 kg dry matter/ha), providing 40 kg/ha
phosphorus was also applied, while in Hall’s experiment on a high-fertility
alluvial soil [90: experiment 4], the maximum increase was only 5% (640 kg
dry matter/ha). On this highly fertile soil, responses to inoculation occurred
in the only year there was also a response to fertilizer phosphorus. Similarly,
in an experiment on another fertile site which was accidentally top-dressed
with about 50 kg/ha phosphorus on two occasions, no response to phosphorus
or inoculation could be detected (Hall, unpublished data). A reduced
response to VAM inocula with increasing soil phosphorus levels is in keeping
with the results of VAM/phosphorus response curve pot experiments (Fig. 1)
[1,29,86,181]. Even so, the tissue phosphorus levels at which responses
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TABLE X. Effect of Applied Phosphorus and Glomus mosseae Inoculation on Growth
and Seed Yield of Broad Bean (Vicia faba L.) Grown in Buried Cylinders in the Field
[From 136 With Site Used as the Replication Factor]

Applied phosphorus (ug P/g soil)

Inoculum 0 Medium (5.5 to 9) High (11 to 18)
Shoot dry weight (gicylinder at 8 weeks)
Glomus mosseae 17.3 21.4 22.5
None 13.6 20.4 18.8

LSD(5%) (inoculum) 2.67
LSD(5%) (phosphorus) 3.27

Seed dry weight (glcylinder at harvest)
Glomus mosseae 8.3 14.0 16.3
None 6.2 10.8 12.4
LSD(5%) (inoculum) 2.64
LSD(5%) (phosphous) 3.23

occurred on Hall’s [90: experiment 4] most fertile site were very high
(0.4%), indicating that the beneficial effects of the inoculant VAM fungi may
not have been restricted to merely utilizing fertilizer phosphorus more
efficiently.

3. Field-sown crops. Field inoculation experiments on field-sown crops
on apparently normal agricultural soils have been conducted on soybean
[Glycine max (L.) Merr. [63,137], cereals [33,34,39,187], faba beans [136],
onions [183], and cotton [190]. In these experiments, maximum responses to
inoculation were up to 35% (Table X) [136], but in none of these experiments
had there been any preselection of fungi likely to produce the maximum
growth responses under the conditions of the experiments. Had this been
done, it is conceivable that the responses to inoculation would have been
greater. In those experiments where rates of phosphorus had been applied,
proportional responses to inoculation generally decreased with increasing
level of applied phosphorus (Fig. 2).

B. Transplanted Crops—Seedlings Raised in ‘“Sterile’” Media

Many horticultural crops and ornamental species are raised in fumigated
or heat-treated soil or in essentially sterile soilless potting media. The
principal reasons for this are that losses from pests and pathogens are reduced
and plant growth rates can be more predictable. Also, seedlings of some
species can be raised aseptically using tissue culture techniques [228]. But
the growth of plants in these media can be very poor owing to the detrimental
effects heat and fumigants can have on VAM or the absence of VAM from
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Fig. 2. Effect of Glomus mosseae inoculum applied below the seed on spring wheat (Triticum
aestivum L.) grain (triangles) and total (squares) yields. O A, uninoculated; B A, inoculated
[from 33].

soil-less potting mixes [144,148,170]. The problem can therefore be rectified
either by inoculating with VAM fungi or relieving the limiting factor that
VAM would normally help correct, for example, by the application of
phosphorus. Some species in which poor growth in media devoid of VAM
fungi has been remedied either by inoculating with VAM fungi or by
applying nutrients are—

® Apple [65,108,172]
® Avocado [146]

® Bell pepper [130]
® Cassava [109]

® Citrus [77,147]

® Grapes [151]

® Onions [212]

® Peach [141]

® Raspberry [154]
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Fig. 3. Effect of Glomus fasciculatum inoculum and fertilizer phosphorus on seedling dry
weight (squares) and percent phosphorus (diamonds) in leaves of Brazilean sour orange (Citrus
aurantium L.) and Troyer citrange [Poncirus trifoliata (L.) Raf. X Citrus sinensis (L.) Osbeck]
growing in phosphorus-deficient (4.6 pg/g bicarbonate extractable) autoclaved soil. 00 ¢,
uninoculated; B 4, inoculated [from 149].

® Tamarillo [42]
® Forest species and ornamentals [13,23,27,45,46,120,127,129,143,
182,215]

For some plant and soil combinations and where VAM normally stimu-
lates phosphorus uptake, the amount of phosphorus which has to be applied
to nonmycorrhizal plants in order to get them to grow as well as mycorrhizal
ones can be very large. For example, when Brazilian sour orange was grown
in a low-fertility soil (4.6 pg available phosphorus/ml soil) approximately
8 t/ha of single superphosphate had to be applied to uninoculated plants to
stimulate growth and tissue phosphorus concentrations to the level of
unfertilized inoculated ones (Fig. 3) [149]. Similarly, Howeler et al. [109],
working on cassava, found that nonmycorrhizal plants had to be fertilized
with 1,600 kg phosphorus/ha for their growth rate to reach that of
mycorrhizal plants receiving no additional phosphorus. But it should be
realized that these are extreme examples resulting from the use of hosts
highly dependent on VAM and soils very deficient in available phosphorus.
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TABLE XI. Effect of Glomus mosseae and Applied Phosphorus on the Shoot Dry
Weight of Apple (Malus domestica Borkh.) Seedlings Grown in Fumigated Soils
[From 108]

Soil
Taunton Magallan Chelan
fine fine  gravelly Esquatzel
VAM  Okanogan silty sandy sandy silt
inoculum  loam loam loam loam loam
Extractable phosphorus
(ng/g soil) 1.6 11.5 12.2 19.4 60.6
pH 6.0 7.8 6.2 6.4 73
Applied phosphorus (mg P/
kg soil)*
0 - 0.6 0.4 0.7 0.5 3.9
+ 1.6 2.7 1.0 1.5 3.9
50 — 32 1.4 2.1 1.9 3.8
+ 3.5 3.6 2.0 2.1 4.1
LSD(5%) 0.08 0.09 0.5 0.07 >0.3

*When calculated from the surface area of soil in the pots and assuming 1.6 kg soil/pot, 50
mg P/ kg soil is approximately equivalent to 72 kg P/ha.

In contrast, Hoepfner et al. [108] found that inoculating apple had no effect
on growth in a very fertile soil without added phosphorus; and in relatively
less fertile soils, inoculation had no significant beneficial effects when more
than 70 kg/ha phosphorus was applied (Table XI).

Most of the studies in the above list were conducted in the nursery, and
subsequent growth after transplanting either was not monitored or has not
been reported. However, Barrows and Roncadori [23], Biermann and
Linderman [27], Cooper [42], Cornet et al. [45], Menge et al. [146],
Morandi et al. [154], and Plenchette et al. [172] showed that when inoculated
and uninoculated seedlings of the same size were raised in sterile media and
transplanted into soils containing a normal complement of VAM fungi, the
inoculated seedlings had improved transplant survival and regrowth, and
subsequently produced plants which were less variable than the uninoculated
ones. As far as I am aware it has not been convincingly demonstrated why
these benefits occurred. One possibility is that the mycorrhizal seedlings had
been pre-inoculated with more effective endophytes than those present in the
soil into which they were being transplanted. Another possibility is that as
with pre-infected transplanted crops (see section II.C) the lag between
transplanting and the establishment of VAM infections limited the growth of
the nonmycorrhizal seedlings after transplanting. In contrast to these exper-
iments, Snellgrove and Stribley [212] failed to detect any benefit on onion
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TABLE XII. Effects of Pre-Inoculating With VAM on Peat Module Raised Onions (cv.
Balstora) Transplanted to the Field With a Soil Containing 31 pg/g Bicarbon-
ate-Extractable Phosphorus [From 212—Without Dazomet Treatments]

At transplanting At harvest
Shoot Harvestable Root
Shoot  phosphorus yield length
VAM fresh content (t/ha—log,e  infected
Module type inoculum  wt (mg) (%) transformed) (%)
Commercial blocking
compost - 550 1.22 1.59 15
Modified low phosphorus
compost - 348 0.53 1.39 24
Modified low phosphorus
compost + 363 0.58 1.60 15
0.085
LSD(5%)

yields from inoculation prior to transplanting into a field soil where water but
not phosphorus was limiting (Table XII). Unfortunately, in order to ensure
that the inoculated seedlings were well infected they used a potting mix for
these seedlings which was less fertile than the commercial potting mix the
controls were raised in. Consequently, at transplanting the inoculated
seedlings were smaller and had much lower shoot phosphorus concentrations
than the controls. The inoculated seedlings were therefore disadvantaged
when transplanted to the field, and conceivably this could have affected their
final yields.

C. Transplanted Crops—Seedlings Raised in Unsterile Soils

In developing countries, where labor is relatively cheap, seedlings of
crops which might otherwise be field-sown can be raised in nurseries and
then transplanted to the field after a previous crop has been harvested. The
advantages of this are that the length of time a crop is growing in the field is
reduced, as is the gap between one crop and the next, more crops can be
harvested per year, and food production per unit area is increased. In these
regions the soils are often particularly low in available phosphorus [22,198],
but the cost of fertilizer is relatively high, which restricts its use. Crops are
therefore often grown in soils containing inadequate phosphorus for maxi-
mum growth and VAM make a major contribution to their phosphorus
nutrition. Simply by broadcasting 1.25 kg inoculum/m? of pre-selected VAM
fungi over the surface of nursery beds at sowing prior to transplanting to the
field, Bagyaraj and Sreeramulu [20] (Table XIII), Govinda Rao et al. [72],
and Sreeramulu and Bagyaraj [213] (Table XIII) have obtained increased
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TABLE XIII. Effect of Preinoculating Chilli (Capsicum annum L.) Transplants With
Glomus fasciculatum and G. albidum on Fruit Yield and VAM Infection Level in Two
Soils [From 20,213]

Applied P (kg Prha)

Inoculum 0 37.5 75
Fruit yield
(kg/4.05m?)
Site 1° None 1.23 1.30 1.81
G. fasciculum 1.33 1.56 -
G. albidum 1.76 2.14 -
LSD (5%):P 0.14 Inoculum 0.22
Site 2° None 0.27 0.37 0.43
G. fasciculatum 0.40 0.52 -
G. albidum 0.38 0.42 —
LSD (5%):P 0.036 Inoculum 0.057
Infection level (%)
Site 1* None 71 75 80
G. fasciculatum 77 91 —
G. albidum 100 100 —-
LSD (5%):P 5.89 Inoculum 9.31
Site 2° None 66 80 80
G. fasciculatum 100 100 —
G. albidum 89 97 -

LSD (5%):P 5.71

Inoculum 9.03

*Site 1 was at Chikkaballapur with a red sandy soil, pH 6.0, 6pg/g of NH4F + HCl extractable
phosphorus. The chilli cultivar was Jwala.

®Site 2 was at Rattinhalli with a black clay soil, pH 7.2, and 12 pg/g of NH4F + HCl extractable
phosphorus. The chilli cultivar was Byadigi.

yields of chilli and finger millet. Bagyaraj and Sreeramulu [20] and
Sreeramulu and Bagyaraj [213] (Table XIII) also found that Glomus
fasciculatum was superior at one site, while G. albidum Walker and Rhodes
was superior at another. Unfortunately, different host cultivars were used at
the two sites, and consequently it is not possible to distinguish whether these
differences in fungal effectiveness were due to adaption of the fungi to soil
conditions or host cultivar, both of which are known to influence responses
to VAM inoculation (Table XIV).

D. Persistence of Responses to VAM Inocula

In soils naturally containing no VAM fungi or VAM fungi less effective
than those which can be introduced, a response to inoculation could be
expected to persist indefinitely provided the fungi in the inocula were well
adapted to the soil and host, and were able to compete [227] with the
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TABLE XIV. Factors Shown to Play a Differential Role in Determining the
Effectiveness of Individual Inoculant VAM Fungi

i) Soil P status [89,204,205,218].
ii) Ability to compete with other VAM fungi [11,49,52,177,194,227].
iii) Temperature [52,203,209,221].
iv) Adaption to soil [25,73,74,121,139,155,165,174,204,213].
v) Adaption of fungus to host (or vice versa) [25,49,51,53,68,79,80,97,129,134,163].
vi) Resistance to heavy metals [69,70].
vii) Soil aeration [196].
viii) Susceptibility to organisms parasitic on VAM fungi [18,132,194,207,217].
ix) Ability to counteract the effects of pathogens of the host [18,54,55,202].

TABLE XV. Some Factors Which May Affect the Effectiveness of Individual
Inoculant VAM Fungi

i) Ability to stimulate uptake of nutrients other than P [4,43,44,97,126].
ii) Ability to stimulate uptake of soil water [12,14,43,52,75,96,97,110,161,206,214].
iii)  Ability to produce plant growth regulators [21,43].
iv) Dependency of host on VAM formation [15,24,26,31,76,87,94,128,134,140,149,
150,171,1731 .

indigenous soil microbiota. However, if a soil’s natural inoculum potential
was low, for example, perhaps by precropping with a nonmycorrhizal species
[but see 164] such as a brassica [66] and the indigenous VAM fungi were as
effective as those in the inocula, inoculation would merely produce a
transitory increase in infection level. The size of the growth response would
then be determined by the length of the delay between germination and the
establishment of good infections in uninoculated plants compared with
inoculated ones.

Hall [89] has argued that where there have been relatively recent major
changes to vegetation and soils perhaps it is to be expected that the
indigenous VAM fungi may no longer be those which are best suited to the
new conditions. But in VAM field and pot experiments in unsterile soil it is
not even necessary to have to assume that this situation preexisted, as the soil
conditions and/or host species were often changed at the start of the
experiments. If these changes were relatively transitory—for example, the
effects of a single application of lime on pH—then responses to inoculation
might also be transitory. Indeed, some pot experiments on unsterile soil do
appear to demonstrate that responses to inoculation decrease with time (Fig.
4) [47,89,186,198]. However, the sizes of the responses to inoculation Hall
[89] and Powell and Daniel [186] detected at early harvests were very large
(Fig. 4), while at later harvests the responses to inoculation fell to much more
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Fig. 4. VAM response ratios (means of eight different inocula and three levels of applied
phosphorus—2.2, 6.6, and 19.8 mg P/pot) of Grasslands Huia white clover growing in
unsterile phosphorus-deficient soil cores with five sequential harvests [from 89].

modest levels on a par with those later detected in the field [90]. Conse-
quently, the extrapolation to the field of the fall in response to inoculation
with time detected in pot experiments must be regarded as questionable.
Furthermore in some of Hall’s [90] (unpublished data) pastoral field
experiments, responses to inoculation continued for more than 3 yr, which
suggests that if there is likely to be a loss of response with time, in the field
its onset is not rapid.

E. Failures of VAM Inocula to Produce Growth Responses

Within their experiments on poor soils, Rangeley et al. [188] (Table VIII)
and Hall [90: experiments 1 and 2 in the second year] detected responses to
inoculation only if phosphorus was applied. Indeed, in one of Rangeley et
al.’s experiments, Glomus etunicatum Becker and Gerd. actually depressed
growth unless 40 kg phosphorus/ha was also applied (Table IX). As both
Hall’s and Rangeley and colleagues’ most effective fungi originated from
relatively fertile soils, it is conceivable that their endophytes were not
adapted to functioning symbiotically in soils with a very low phosphorus
status. Early attempts to stimulate clover growth in the field by Hall
(unpublished data) also failed because the isolate of G. fasciculatum used
was no more effective than the indigenous fungi at a low level of available
soil phosphorus. Jensen’s [119] and Ross and Harper’s [193] failure to detect
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responses in unsterile soil could also have been because the inocula were
either not effective or no more effective than the indigenous ones. Indeed, in
both Jensen’s and Ross and Harper’s studies, the inocula contained fungi
derived from the experimental sites, and apparently no attempt had been
made to select for effectiveness. There are, however, many reasons—other
than that the inoculant fungi were no more effective than the indigenous
ones—that responses to inoculant fungi may not be detected. For example,
Bolan et al. [29] and Pairunan et al. [169] detected little or no response to
inoculation in subterranean clover at very low levels of available soil
phosphorus as well as at very high levels. Similarly, Black and Tinker [28]
(Table IV) probably failed to get a response to inoculation in their
plus-phosphorus treatment because this raised the soil phosphorus status to a
level where VAM had no beneficial effects (Fig. 1). Newbould and Rangeley
[162] also failed to get a response to inoculation on a brown earth. But they
had poor nodulation of their clovers, and as nitrogen was probably the
principal factor limiting growth, it would have masked any beneficial effects
a more effective VAM fungus may have had on plant phosphorus uptake.

III. SELECTION OF VAM FUNGI

An excellent discussion of the selection of VAM fungi for possible use in
agriculture has been published by Abbott and Robson [3], and consequently
I have tended to restrict my comments to those papers which have appeared
since their paper was written in 1980.

The variations in VAM fungal effectiveness may be due to differences in
the ratio of hyphae a fungus produces in the soil to the amount of mycelium
in the root which supports it [3,74,200]. Abbott and Robson [6] also
speculated that the distribution of hyphae in the soil and a number of other
factors [4] may also be important. Whatever the reasons for these differences
it is known that a variety of factors can or might modify the subsequent
effectiveness of a VAM fungus and may have to be taken into account when
selecting VAM fungi for a specific purpose. For example, pH can affect the
germination of VAM fungal spores, hyphal growth, and the effectiveness of
endophytes [7,58,79,81,106,122,135,208,219,224]. Other factors known
to, or which might, have similar effects are listed in Table XIV and XV along
with references to pertinent papers.

Govinda Rao et al. [72}], Gianinazzi-Pearson et al. [67], Hall [89], Powell
[180], and Schubert and Hayman [204], for example, have outlined pro-
cedures for comparing the effectiveness of VAM fungi. Govinda Rao and
co-workers’ [72] technique was designed specifically to select fungi for the
pre-inoculation of transplanted crops raised in unsterile soils (section II.C).
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Seedlings were first raised in unsterile nursery soils containing a normal
complement of indigenous mycorrhizal fungi to which either VAM cultures
on guinea grass (Panicum maximum Jacq.) or a similar amount of an
uninfected grass root and soil mixture had been added. Once infections had
developed, the seedlings were transplanted to experimental field plots and
plant growth monitored. This technique follows precisely the procedures
used by farmers in India and therefore cannot be criticized.

The selection of fungi using pre-inoculation transplant techniques, how-
ever, is probably of little value for normally field-sown crops and pastures as
the ability of the fungi to survive in inocula suitable for field use has not been
taken into account—a criticism which can also be made of the experiments
of Gianinazzi-Pearson et al. [67], Hall [89], and Schubert and Hayman
[204]. These experiments can also be faulted because fungi were screened in
greenhouse pot experiments and consequently all the criticisms of pot
experiments outlined in section I apply. Unfortunately Schubert and Hayman
[204] also compared VAM effectiveness in sterile soil, which ignores the
ability of the fungi to function with a competing soil flora. Gianinazzi-
Pearson and co-workers’ [67] techniques can also be criticized because they
used sievings of field soils as the VAM inocula instead of pure cultures. They
may therefore have estimated the confounded beneficial effects of the VAM
fungi and deleterious components in the inocula [41,89,199]. Most of these
faults are, however, avoided in the technique devised by Powell [180]. In
this, VAM fungi were first isolated from unsterile soil by baiting [85,91]
with sterile perennial ryegrass (Lolium perenne L.) seedlings. The seedlings
were then transplanted into sterile soil, and the ability of the endophytes to
stimulate growth was compared by weighing harvested herbage. Those fungi
which stimulated growth most were then evaluated in several unsterile soils
in a shadehouse and in the field. Unfortunately his field comparisons
involved inappropriate pre-inoculated transplant techniques. However, in his
shadehouse study, soils infested with Glomus fasciculatum, or the initial
fungal selections or an uninfested control soil were each made into pellets
containing two white clover seeds. These were then sown onto a number of
unsterile soils in pots; and after 13 wk, plant growth was measured and the
effects of the VAM fungi compared. This is an approach which has much to
recommend it. The inoculant fungi were introduced into the soil in soil
pellets which may have some practical value (section IV), and once the
seedling has passed through the pellet the inoculant fungus has to compete
with the indigenous VAM fungi and soil flora and fauna before establishing
an infection.

It is conceivable that some fungi with potentially desirable characteristics
such as a superior ability to persist in the soil [3] may have been discarded
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during Powell’s initial selection, but he has argued (personal communica-
tion) that this is a risk one might have to take to reduce the number of fungi
being further assessed to a manageable level. The effectiveness of VAM
fungi can vary with soil phosphorus level (Table II), and hence screening of
VAM fungi should be conducted with several levels of applied phosphorus
[e.g., 72,89] instead of the one level Powell used [180]. Powell’s experi-
ments could also have been extended to screen for ability to counteract the
deterimental effects of pathogens and various other factors listed in Tables
XIV and XV. Obviously experiments incorporating these additional factors
would be very large and quite unmanageable unless confounded designs or
resolvable balanced incomplete blocking designs were employed [40].

Daft and Hogarth [49] showed that inocula containing more than one
endophyte gave more consistent results than those containing a single
species. They therefore suggested mixtures of VAM fungi be used for field
inoculations. But there would be no value in including a species in a mixed
inoculum which had no redeeming features, and therefore screening would
still have to be carried out to eliminate these. Moreover, as competition
between VAM can occur [11,177,227] careful consideration would have to
be given to the composition of mixed inocula to avoid the inclusion of one
which might oust the others.

IV. INOCULA AND INOCULUM PRODUCTION

A number of pot investigations have shown that inoculant VAM fungi can
spread through VAM fungus infested soil at 300 to >1,000 mm per year
[11,159,177]. Also Jakobsen [115] has detected a rate of spread of 300 mm
in 96 days through fumigated soil in the field. If similar rates of spread for
inoculant VAM fungi can be demonstrated through unsterilized field soils,
then it should be possible to reduce the amount of pelleted whole soil
inoculum to just a few tens of kilograms per hectare [90]. However, lighter
and possibly more potent inocula such as mass-produced spores [152] or
those produced using the nutrient film technique [59,60,145,158], root organ
cultures [37], in expanded clay [56] or peat cultures (Mosse, personal
communication) [226] might prove more attractive than whole soil for field
use,

In most field experiments conducted to date the inoculum was whole soil
containing VAM spores, hyphae, and infected roots (see ref 145 for a review
of pot culture methods for the production of inocula). In some cases it was
pelletized using clay binding agents [90,95,103] which made it more
convenient to apply, and by placing it in the seeding furrows, i.e., in the
immediate vicinity of the seed, made it more effective than broadcast
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inoculum [104]. VAM have also been successfully introduced into soils by
inoculating seed or seedlings with fresh or lyophilized VAM fungal spores
[64,100], fresh roots [e.g., 84,89], dried whole inocula [137], lyophilized
roots [48], and by fluid-drilling soil sievings or homogenized spores,
hyphae, and roots [57,63,104].

The first roots of VAM hosts which have relatively small seeds containing
limited quantities of phosphorus are quickly infected by VAM fungi [e.g.,
210]. However, species with relatively large seeds can contain considerable
stores of phosphorus, which seems to make their seedling roots uninfectable
and hence inoculation is more successful if the inoculum is placed a few
centimeters below the seed (e.g., soybean, corn, sorghum [114]; peach
[141]; citrus—Menge, personal communication).

Some VAM fungi can be adversely affected by other microorganisms (see
Table XIV: viii for references), and obviously it is important that inocula
should be free of such hyperparasites. But perhaps even more importantly it
should be ensured that inocula produced for commercial purposes are free of
oragnisms pathogenic to the host; and to achieve this it may be necessary to
go to considerable lengths [145,150]. Commercially produced inocula must
also maintain their integrity and not be subject to drift in their effectiveness
[47] or to contamination with other, perhaps less desirable VAM fungi
[3,85].

V. CONCLUSIONS AND FUTURE RESEARCH

Research funding bodies are often populated by individuals who are not
scientists themselves but who have specialist skills in other directions. To
extract money from these bodies against competition it is sometimes nec-
essary to make a case outlining the most favorable outcome of a research
program. Unfortunately, when this is written by an overenthusiastic re-
searcher or similarly modified by a well-meaning head of a department, it can
lead to more optimism than is really justified. I can think of one example at
least where this has occurred and which resulted in a suggestion that farmers
would be using VAM inocula by the end of the decade—a prediction made
in 1977! The result was predictable: a loss of confidence in the research, a
withdrawal of funding, and the collapse of the research program. Of the
papers which have been published on VAM, those which deal with field
applications are very much in the minority. Far more, however, expound the
potentials for exploiting the symbiosis either in their introductions or
discussions, and I believe that this too along with spectacular responses in
greenhouse pot experiments has added to perhaps unjustified optimism.
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A. Field-Sown Crops and Pastures

Whether VAM technology will ever be used in the production of
field-sown crops and pastures will depend on the economics of employing it
as compared with, for example, stimulating growth with fertilizers. But in
past field experiments (see section II.A) the primary consideration was to
gauge the effects inoculant fungi had on growth. Whether the method of
inoculation was economically justifiable or had any agronomic value was of
secondary interest. All that really mattered was that the host plant had as
good a chance as possible of picking up the inoculant fungus and that the
experiment did not founder for want of inoculum potential. The levels of
inocula applied in the experiments were therefore very high, generally in the
range 0.8 t/ha [111] to 25 t/ha [9] although 100 t/ha was used by Lambert and
Cole [138], all of which were well beyond what could be considered
practical. Consequently, before an economic appraisal of the value of
inoculating field-sown crops and pastures with VAM inocula can be made,
more information is needed on the minimum quantity of inocula that has to
be applied and the most cost-effective way of producing it. Additional work
is also required on identifying very effective endophytes, the soil/host
combinations to which they are best suited, and how long responses to
inoculation are likely to last. Of these, I think the most important is our
inability to produce large quantities of cheap, reliable inocula, for without
this, research on the effects of inoculating field-sown crops and pastures
becomes little more than a stimulating academic exercise. Dehne and
Backhaus’s [56] technique of growing inocula inside expanded clay in pot
cultures and the peat cultures of Warner et al. [226] appear to be suited to
commercial use. However, I believe that the production of large quantities of
inocula in pure axenic culture [107] is the only way that inocula will become
cheap enough to be employed as rhizobial inocula are currently used in
agriculture.

B. Transplanted Crops

From the work of Bagyaraj and co-workers (see section II.C) and, for
example, the research on citrus (see section III.B) there can be little doubt
that VAM inocula can produce worthwhile and economic growth responses
for those transplanted species which are raised in unsterile or sterile soil in
nurseries, are transplanted into relatively phosphorus-deficient soils, and
where the cost of phosphatic fertilizers is a severe economic constraint. At
the other extreme, where VAM have no detectable effects other than with the
phosphorus nutrition of a crop and the cost of phosphatic fertilizer is
negligible compared with the value of the crop [212], VAM can be ignored.
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Between these two ends of the scale—where either the cost of fertilizer
phosphorus is an important consideration or where VAM have some
beneficial effect, other than with the phosphorus nutrition of a crop, which
cannot otherwise be achieved cheaply—is an area where there is insufficient
information at present to predict the future importance of VAM. Clearly this
is an area which requires an additional research input.
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Appendix 6. Effects of fungicides on
containerised plants in Finland.

Tarja Laatikainen Side effects of nursery fungicides on ectomycorrhiza of Scots pine
seedlings. /m EUROSOIL 2004, September 04 to 12, Freiburg, Germany.
www.bodenkunde?2.uni-freiburg.de/eurosoil/abstracts/id771 Laatikainen.pdf

Abstract (abridged)

About 150 million forest tree seedlings are annually produced in Finnish forest nurseries.
During last two decades container seedlings have extensively replaced barerooted seedlings.
In containers seedlings are growing as dense moist mats, which is favourable to pathogenic
fungi. Furthermore, in Finland seedlings are usually stored over winter outdoors under the
snow cover, which allow some fungi, like scleroderris canker (Gremmeniella abietina Lagerb.),
and snow blights, to spread from one container to another. Therefore, routine controls for
fungal diseases with fungicides are considered to be a necessary forest nursery practice, and
there is practically no seedling production in Finland without fungicide treatments.

Fungicides chlorothalonil and propiconazole have become common forest nursery practice for
control of scleroderris canker and snow blights of conifers (e.g. Phacidium infestans P. Karst.
and Herpotrichia juniperi Duby) during over winter cold storage. The repeated and long-term
use of fungicides has raised the concern of the side effects of pesticides on soail
microorganisms, especially on ectomycorrhizal infection of seedlings after outplanting.

In the preset study the side effects of the fungicides, chlorothalonil and propiconazole, on
ectomycorrhizal fungi on Scots pine (Pinus sylvestris L. Karst.) seedlings have been evaluated
both in laboratory and field experiments. Toxicity tests were performed with pure culture tests
on agar petri dishes, where the fungal growth was measured as colony diameter, and in liquid
pure cultures, where the growth was determined as mycelium biomass and ergosterol
concentration. Fungicide effects on nutrient uptake and allocation by mycorrhizal fungi to
symbiont seedling were studied both in allocation tests in pure cultures, and in laboratory
microcosms with Scots pine seedlings inoculated with Paxillus involutus or Hebeloma cf.
longicaudum, as well as, in a field experiment in a forest nursery.

Both chlorothalonil and propiconazole had a clear inhibitory effect on the growth of almost all
tested mycorrhizal fungi. Allocation tests showed that ectomycorrhizal fungi have differential
capability to take up ammonium, and propiconazole might influence on these processes
depending on a species of ectomycorrhizal fungus. Propiconazole induced free amino acid
arginine synthesis both in pure culture tests with P. /nvolutus mycelium, and in shoot of
inoculated Scots pine seedling. Noteworthy was the accumulation of arginine in samples both
from non-mycorrhizal and mycorrhizal seedlings. Chlorothalonil caused growth reduction and
a retarded frost hardening in forest nursery container seedlings. The effect can be seen still
two years later as changes in concentrations of total nitrogen and total free amino acids.
Results of this study may indicate a stress-related influence of both fungicides in Scot pine
seedlings.
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